Chapter 02 Mendel's Principles of Heredity

Fill in the Blank Questions

1. A ______________________ is a sequence of nucleotides that codes a basic unit of biological information.

2. ______________________ is the science of heredity, and it seeks a precise explanation of the biological structures and mechanisms that determine what is inherited and how it is inherited.

3. ______________________ is the purposeful control over mating by choice of parents for the next generation.

4. ______________________ is the process whereby both egg and pollen come from the same plant.

5. The _______ _________ is a Mendelian law that states that both alleles must separate during gamete formation.

6. _______, _______, and _________ all were involved in the rediscovery of Mendel's research.

7. ______-_______ lines produce offspring carrying specific parental traits that remain constant from generation to generation.

8. The _______ _________ or F₂ generation is the progeny of the first filial or F₁ generation.

Describe the meaning of each symbol.

9. ______________________

10. ______________________
Essay Questions

13. Inherited trait expressed only when the controlling gene is homozygous.

15. A cross in which the traits carried by the male parent and the female parent are reversed.

Multiple Choice Questions

16. The first offspring from the parents are called
 A. P.
 B. F₁.
 C. F₂.
 D. testcross.
 E. backcross.
17. Which of the following terms is not a type of mating cross?
 A. reciprocal
 B. testcross
 C. monohybrid
 D. dihybrid
 E. dominant

18. A __________ is a cross between an unknown and a homozygous recessive.
 A. testcross
 B. dihybrid
 C. monohybrid
 D. backcross
 E. controlled

19. If an individual has 10 gene pairs, how many different gametes can be formed if three of the gene pairs are homozygous and the remaining seven gene pairs are heterozygous?
 A. 49
 B. 100
 C. 128
 D. 1024
 E. 131,072

20. If the parents of a family already have two boys, what is the probability that the next two offspring will be girls?
 A. 1
 B. 1/2
 C. 1/3
 D. 1/4
 E. 1/8

21. In some genetically engineered corn plants the dominant gene (BT) produces a protein that is lethal to certain flying insect pests that eat the corn plants. It was also found that the pollen could cause death in some flying insects. If the corn plant is heterozygous for BT, what proportion of the pollen would carry the dominant gene?
 A. all pollen
 B. 1/2
 C. 1/3
 D. 1/4
 E. 1/8

22. Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. What proportion of the progeny is expected to be heterozygous for tall and smooth?
 A. 1/2
 B. 1/4
 C. 1/8
 D. 1/16
 E. 0

23. Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. What proportion of the progeny is expected to be homozygous for short and wrinkled?
 A. 1/2
 B. 1/4
 C. 1/8
 D. 1/16
 E. 0
24. A rare recessive trait in a pedigree is indicated by which pattern of inheritance?
 A. vertical
 B. horizontal
 C. diagonal
 D. both vertical and horizontal
 E. None of these is correct.

25. Sickle cell anemia is a recessive trait in humans. In a cross between a father who has sickle cell anemia and a mother who is heterozygous for the gene, what is the probability that their first three children will have the normal phenotype?
 A. 1/4
 B. 1/2
 C. none
 D. 1/8
 E. 1/16 will be albino

26. The dominant trait, Huntington disease causes severe neural/brain damage at approximately age 40. A female whose mother has Huntington disease marries a male whose parents are normal. It is not known if the female has the disease. What is the probability that their firstborn will inherit the gene that causes Huntington disease?
 A. 25%
 B. 50%
 C. 75%
 D. 100%
 E. 0%

27. In a monohybrid cross AA × aa, what proportion of homozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

28. In a monohybrid cross AA × aa, what proportion of heterozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.

29. In a dihybrid cross AAbb × aaBB, what proportion of homozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

30. In a dihybrid cross AABB × aabb, what proportion of heterozygotes for both gene pairs is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.
31. In the dihybrid cross AaBb × aabb, what proportion of homozygotes is expected among the F₁ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

32. In the dihybrid cross AaBb × aabb, what proportion of heterozygotes for both gene pairs is expected among the F₁ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.

33. Among the dihybrid crosses below, which will produce a 1:1 phenotypic ratio?
 A. AABB × aabb
 B. AaBb × AaBb
 C. AaBb × aabb
 D. AaBB × aaBB
 E. AAbb × aaBB

34. Among the dihybrid crosses below, which will give a 1:1:1:1 ratio?
 A. AABB × aabb
 B. AaBb × AaBb
 C. AaBb × aabb
 D. AaBB × aaBB
 E. AAbb × aaBB

35. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a homozygous black guinea pig with a heterozygous brown guinea pig, what proportion of the progeny will be black?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

36. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a homozygous black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be heterozygous?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

37. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be homozygous?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

Fill in the Blank Questions
Match the following terms with the best definition

a. self-fertilization
b. cross fertilize
c. monohybrid crosses
d. artificial selection
e. reciprocal crosses

38. ______ The purposeful control of mating by choice of parents for the next generation.

39. ______ Fertilization in which both egg and pollen come from the same plant, resulting in offspring with
 the same genetic traits as the single parent.

40. ______ To brush the pollen from one plant onto the female organ of another plant, thereby creating
 offspring with the particular traits of the selected parent plants.

41. ______ Crosses in which the male and female traits are reversed, thereby controlling whether a particular
 trait is transmitted by the egg or the pollen.

Multiple Choice Questions

42. ______ is/are a cross(es) between parents that differ in only one trait.
 A. Self-fertilization
 B. Cross fertilize
 C. Monohybrid crosses
 D. Artificial selection
 E. Reciprocal crosses

43. An allele that expresses its phenotype even when heterozygous with a recessive allele is termed
 A. recessive.
 B. recombinant.
 C. dominant.
 D. parental.
 E. independent.

44. An alternative form of a single gene is known as
 A. parental.
 B. dihybrid.
 C. reciprocal.
 D. allele.
 E. recessive.

45. The diploid cell formed by the fertilization of the egg by the sperm during sexual reproduction is a
 A. reciprocal.
 B. zygote.
 C. dihybrid.
 D. gamete.
 E. monohybrid.

46. A phenotype reflecting a new combination of genes occurring during gamete formation is called
 A. a recombinant type.
 B. an independent assortment.
 C. heterozygous.
 D. homoyzygous.
 E. a multihybrid cross.
47. The actual alleles present in an individual make up the individual's
 A. recombinant types.
 B. zygote.
 C. dominant allele.
 D. allele.
 E. genotype.

True / False Questions

48. Mendel was the only botanist to work with large numbers of offspring, to count all offspring, subject his
 results to statistical analysis, and then compare his results with predictions based on his models.
 True False

49. The mating of parents with antagonistic traits produces hybrids.
 True False

50. Mendel's law of segregation states that two alleles for each trait unite in a specific manner during gamete
 formation and therefore give rise to predictable observable traits.
 True False

51. Dihybrid crosses helped reveal the Law of Independent Assortment.
 True False

52. The Punnett square was introduced in 1906 by Reginald Punnett and provides a simple and convenient
 method of tracking possible combinations of gametes that might be produced in a given cross.
 True False

53. Using the product rule, one would calculate the probability of parents having six children who are all
 boys as \((\frac{1}{2})^6\).
 True False

54. The sum rule states that the probability of both of two mutually exclusive events occurring is the sum of
 their individual probabilities.
 True False

55. If you know the phenotype and the dominance relation of the alleles you can predict the genotype.
 True False

56. An individual can be a heterozygote for one trait and a homozygote for another.
 True False

57. A testcross is a cross between two heterozygotes.
 True False

58. At fertilization, in the mating of dihybrids, four different kinds of eggs can combine with four different
 kinds of pollen, producing a total of sixteen different genotypes.
 True False

59. During gamete formation, different pairs of alleles on different chromosomes segregate independently of
 each other.
 True False

60. If yellow and round phenotypes in peas are dominant, you know the genotype of all peas that are green
 and wrinkled.
 True False

61. A pedigree is a family history of a specific trait shown for a minimum of three generations.
 True False
62. Several single-gene disorders are more common in some populations of people than in others.
 True False

63. A lethal disorder does not include the inheritance of traits that cause death in adulthood.
 True False

64. The following symbols $\sim = \pm$ indicate a consanguineous mating.
 True False

65. Cross-fertilization is the same as reciprocal cross.
 True False

66. The first filial generation is the offspring of parents.
 True False

67. A zygote is a fertilized egg.
 True False

68. A YY or yy genotype is called heterozygous.
 True False

69. When Mendel repeated his pea experiments in beans, he found flowers that ranged from white to pale violet to purple. This is due to bean flower color being determined by more than one gene.
 True False

Essay Questions

70. In corn liguleless, (L^1) is recessive to ligules (L^1) and a green leaf (G) is dominant to the normal non-green (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F$_1$.

71. In corn liguleless, (L^1) is recessive to ligules (L^1) and a green leaf (G) is dominant to the normal non-green (g). If a testcross is performed with a plant heterozygous for ligules and green leaves, what would be the phenotypes and genotypes of the progeny?
72. In corn liguleless, \((l^1)\) is recessive to ligules \((L^1)\) and a green leaf \((G)\) is dominant to the normal non-green \((g)\). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules predict the phenotypes and genotypes of the \(F_2\).

73. In *Drosophila*, forked bristles \((fk)\) are recessive to normal \((fk+)\) and glassy eyes \((gls)\) are recessive to normal \((gls+)\). If a homozygous wild-type male is mated to a forked-bristle, glassy-eye female, predict the genotypes and phenotypes of the \(F_1\).

74. In *Drosophila*, forked \((fk)\) bristles are recessive to normal \((fk+)\) and glassy eyes \((gls)\) are recessive to normal \((gls+)\). If an \(F_1\) heterozygous female is backcrossed to the homozygous wild-type male parent, predict the genotypes and phenotypes of the offspring.

75. In *Drosophila*, forked \((fk)\) bristles are recessive to normal \((fk+)\) and glassy eyes \((gls)\) are recessive to normal \((gls+)\). If a homozygous wild-type male is mated to a forked-bristled, glassy-eyed female, predict the genotypes and phenotypes of the \(F_2\).

76. A rosy-eyed *Drosophila* with wild-type bristles was crossed with a forked *Drosophila* with wild-type eyes. The \(F_1\) were wild type for both traits, whereas the \(F_2\) consisted of 306 wild-type, 94 rosy-eyed, 102 fork-bristled, and 33 forked-bristled and rosy-eyed flies. Infer the genotypes of the parents.
77. In pecans, the outer shell may be thick (T) or thin (t). The shell of pecans is the pericarp. If you use the pollen from a homozygous thick shell to pollinate a thin-shell tree, what shell type would form on the pecans of this tree following the cross?

![Phenotype and Genotype Diagram]

78. If you use the seed from the pecans of the above cross to produce an F₂, what shell type will form on the pecans of the F₁ plant?

![Phenotype and Genotype Diagram]

79. After a cross between two corn plants, the F₁ plants all had a dwarfed phenotype. The F₂ consisted of 1,207 dwarf plants and 401 tall plants. Identify the phenotypes and genotypes of the two parents.

![Parent A and Parent B Diagram]
80. After a cross between two mice, the F₁ offspring all had the same phenotype. The F₂ consisted of 91 short tails and 29 normal tails. Identify the phenotypes and genotypes of the two parent mice.

![Pedigree Diagram](image)

Below is a pedigree for a human trait. Shaded symbols are for individuals exhibiting the trait. (A) Identify the mode of inheritance of the trait. (B) Apply the laws of probability to calculate the probability that the offspring of a marriage between unaffected cousins will exhibit the trait.

![Pedigree Diagram](image)

81. (A) Mode of inheritance

82. (B) Probability
83. In some plants, a purple pigment is synthesized from a colorless precursor. In a cross between two plants, one purple and the other colorless, an F₁ generation was produced that was all-purple. The F₂ produced from the F₁ had 775 purple, 200 red and 65 colorless. What is the genotype of the parents?

<table>
<thead>
<tr>
<th>Purple parent</th>
<th>Colorless parent</th>
</tr>
</thead>
</table>

84. Short hair in rabbits is produced by a dominant gene (I⁺) and long hair by its recessive allele (l). Black hair results from the action of a dominant gene (b⁺) and brown hair from its allele (b). Determine the genotypic and the corresponding phenotypic ratios of the F₁ from a cross of a female rabbit with brown hair and a male rabbit with long hair. Assume that the female is homozygous for short hair and the male is homozygous for black hair.

85. Short hair in rabbits is produced by a dominant gene (I⁺) and long hair by its recessive allele (l). Black hair results from the action of a dominant gene (b⁺) and brown hair from its allele (b). Determine the genotypic and the corresponding phenotypic ratios of the F₂ offspring, beginning with a parental cross of a female rabbit with brown hair and a male rabbit with long hair. Assume that the P female is homozygous for short hair and the P male is homozygous for black hair.

86. Stem color of tomato plants is known to be under the genetic control of at least one pair of alleles such that A- results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F₁ from a cross between an inbred tomato plant with a purple stem and fruit with two locules crossed to a tomato plant with a green stem and fruit with multiple locules.
87. Stem color of tomato plants is known to be under the genetic control of at least one pair of alleles such that A- results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F₂ offspring beginning with a parental cross between an inbred tomato plant that has a purple stem and fruit with two locules and a tomato plant that has a green stem and fruit with multiple locules.

88. What does a diamond symbol ◊ in a pedigree indicate?

89. What does a vertical pattern of inheritance in a pedigree likely indicate?

90. Calculate the probability of the production of a homozygous recessive genotype for the following cross:
 \(AaBbccddEeFf \times AaBbCcddEeFf \)

91. Calculate the probability of either all-dominant or all-recessive genotypes for the alleles A, B, E, and F in the following cross: \(AaBbccddEeFf \times AaBbCcddEeFf \)
92. What are the four general themes that have arisen from Mendel's work?

What are the possible genotypes of persons 1, 2, 3 and 4?

93. Person 1

94. Person 2

95. Person 3

96. Person 4
97. Below is a pedigree of a human genetic disease in which solid color indicates stricken individuals. Apply the laws of probability and calculate the probability the offspring of the cousin marriage 2 × 3 will exhibit the disease.

98. Below is a pedigree of a human genetic disease in which solid color indicates stricken individuals. Apply the laws of probability and calculate the probability the offspring of the cousin marriage 1 × 4 will exhibit the disease.

99. A youngster has dozens of pet mice and asks you why their coat colors are so different. He explains that his favorite color is black with white patches and wonders how he can get more of them, yet his favorite mice are actually the "nice" white ones who are gentler than the active nippy black ones. You decide to give a simple genetics lesson. Help the youngster set up an artificial selection for "nice" black mice with white spots, including an indication of expected results and an interpretation of the data.
100. As an owner of an orchard you realize that the selective breeding of apple trees to produce the most beautiful red apples have left customers displeased with the now bland-tasting beautiful apples. What has been indicated about the two traits? How would you as an orchard owner fix the problem for the long term?

101. You are out on a nature walk up in the mountains and you find a pretty wildflower in the lower altitude that is short and bushy with small, fragrant, bright purple flowers. In the higher altitude you find what seems to be the same plant, yet it is tall and sparse with larger flowers of the same color and fragrance. A) Set up an experiment to test the hypothesis that the plants are different due to genetic but not environmental influences. B) Is it possible to tell if both genetic and environmental effects occur?

102. You wish to know the genotype of some carrot plants that you have grown in your garden so that you might grow more of them. They have reddish orange flesh, are sweet in taste, long in root, and short in leaf. Using classical genetic techniques how would you determine the genotype?

103. You are talking to your father about your relatives and he shares with you that there is a late-onset disease that seems to run in his family. What could you do to determine your probability of having this late-onset disease?
Chapter 02 Mendel's Principles of Heredity Key

Fill in the Blank Questions

1. A _________________ is a sequence of nucleotides that codes a basic unit of biological information.
 gene
 Bloom's Level: 1 Remember
 Section: 2.01
 Topic: General

2. _________________ is the science of heredity, and it seeks a precise explanation of the biological structures and mechanisms that determine what is inherited and how it is inherited.
 Genetics
 Bloom's Level: 1 Remember
 Section: 2.01
 Topic: General

3. _________________ is the purposeful control over mating by choice of parents for the next generation.
 Artificial selection
 Bloom's Level: 1 Remember
 Section: 2.01
 Topic: General

4. _________________ is the process whereby both egg and pollen come from the same plant.
 Self fertilization
 Bloom's Level: 1 Remember
 Section: 2.01
 Topic: General

5. The _____ ___ ___________ is a Mendelian law that states that both alleles must separate during gamete formation.
 law of segregation
 Bloom's Level: 1 Remember
 Section: 2.01
 Topic: Mendelian Inheritance

6. __________, __________ and __________ all were involved in the rediscovery of Mendel's research.
 Corens, deVries, Tschermak
 Bloom's Level: 1 Remember
 Section: 2.02
 Topic: Mendelian Inheritance

7. ____________ lines produce offspring carrying specific parental traits that remain constant from generation to generation.
 Pure-breeding
 Bloom's Level: 1 Remember
 Section: 2.02
 Topic: Mendelian Inheritance

8. The ____________ or F₂ generation is the progeny of the first filial or F₁ generation.
 second filial
 Bloom's Level: 2 Understand
 Section: 2.03
 Topic: Mendelian Inheritance

(p. 31) Describe the meaning of each symbol.
9. Normal male

10. Normal female

11. Mating

12. Affected male

Essay Questions

13. Inherited trait expressed only when the controlling gene is homozygous.
 Recessive

 Alleles
15. A cross in which the traits carried by the male parent and the female parent are reversed.

Reciprocal cross

Multiple Choice Questions

16. The first offspring from the parents are called
A. P.
B. F₁.
C. F₂.
D. testcross.
E. backcross.

17. Which of the following terms is not a type of mating cross?
A. reciprocal
B. testcross
C. monohybrid
D. dihybrid
E. dominant

18. A ____________ is a cross between an unknown and a homozygous recessive.
A. testcross
B. dihybrid
C. monohybrid
D. backcross
E. controlled

19. If an individual has 10 gene pairs, how many different gametes can be formed if three of the gene pairs are homozygous and the remaining seven gene pairs are heterozygous?
A. 49
B. 100
C. 128
D. 1024
E. 131,072

20. If the parents of a family already have two boys, what is the probability that the next two offspring will be girls?
A. 1
B. 1/2
C. 1/3
D. 1/4
E. 1/8
21. In some genetically engineered corn plants the dominant gene (BT) produces a protein that is lethal to certain flying insect pests that eat the corn plants. It was also found that the pollen could cause death in some flying insects. If the corn plant is heterozygous for BT, what proportion of the pollen would carry the dominant gene?
A. all pollen
B. 1/2
C. 1/3
D. 1/4
E. 1/8

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

22. Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. What proportion of the progeny is expected to be heterozygous for tall and smooth?
A. 1/2
B. 1/4
C. 1/8
D. 1/16
E. 0

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

23. Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. What proportion of the progeny is expected to be homozygous for short and wrinkled?
A. 1/2
B. 1/4
C. 1/8
D. 1/16
E. 0

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

24. A rare recessive trait in a pedigree is indicated by which pattern of inheritance?
A. vertical
B. horizontal
C. diagonal
D. both vertical and horizontal
E. None of these is correct.

Bloom's Level 2: Understand
Section: 2.03
Topic: Mendelian Inheritance

25. Sickle cell anemia is a recessive trait in humans. In a cross between a father who has sickle cell anemia and a mother who is heterozygous for the gene, what is the probability that their first three children will have the normal phenotype?
A. 1/4
B. 1/2
C. none
D. 1/8
E. 1/16 will be albino

Bloom's Level 3: Apply
Section: 2.03
Topic: Mendelian Inheritance
26. The dominant trait, Huntington disease causes severe neural/brain damage at approximately age 40. A female whose mother has Huntington disease marries a male whose parents are normal. It is not known if the female has the disease. What is the probability that their firstborn will inherit the gene that causes Huntington disease?
 A. 25%
 B. 50%
 C. 75%
 D. 100%
 E. 0%

 Bloom's Level: Apply
 Section: 2.03
 Topic: Mendelian Inheritance

27. In a monohybrid cross AA × aa, what proportion of homozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

 Bloom's Level: Apply
 Section: 2.02
 Topic: Mendelian Inheritance

28. In a monohybrid cross AA × aa, what proportion of heterozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.

 Bloom's Level: Apply
 Section: 2.02
 Topic: Mendelian Inheritance

29. In a dihybrid cross AAbb × aaBB, what proportion of homozygotes is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

 Bloom's Level: Apply
 Bloom's Level 4: Analyze
 Section: 2.02
 Topic: Mendelian Inheritance

30. In a dihybrid cross AABB × aabb, what proportion of heterozygotes for both gene pairs is expected among the F₂ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.

 Bloom's Level: Apply
 Section: 2.02
 Topic: Mendelian Inheritance
31. In the dihybrid cross AaBb × aabb, what proportion of homozygotes is expected among the F₁ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are homozygotes.
 E. None are homozygotes.

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

32. In the dihybrid cross AaBb × aabb, what proportion of heterozygotes for both gene pairs is expected among the F₁ offspring?
 A. 1/4
 B. 1/2
 C. 3/4
 D. All are heterozygotes.
 E. None are heterozygotes.

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

33. Among the dihybrid crosses below, which will produce a 1:1 phenotypic ratio?
 A. AABB × aabb
 B. AaBb × AaBb
 C. AaBb × aabb
 D. AaBB × aaBB
 E. AAbb × AaBB

Bloom's Level 4: Analyze
Section: 2.02
Topic: Mendelian Inheritance

34. Among the dihybrid crosses below, which will give a 1:1:1:1 ratio?
 A. AABB × aabb
 B. AaBb × AaBb
 C. AaBb × aabb
 D. AaBB × aaBB
 E. AAbb × aaBB

Bloom's Level 4: Analyze
Section: 2.02
Topic: Mendelian Inheritance

35. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a homozygous black guinea pig with a heterozygous brown guinea pig, what proportion of the progeny will be black?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance
36. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a homozygous black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be heterozygous?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

 *Bloom's Level 3: Apply
 Section: 2.02
 Topic: Mendelian Inheritance*

37. Assume that in guinea pigs, dark brown fur (B) is dominant to black fur (b). If you mate a black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be homozygous?
 A. none
 B. 1/4
 C. 1/2
 D. 3/4
 E. all

 *Bloom's Level 3: Apply
 Section: 2.02
 Topic: Mendelian Inheritance*

Fill in the Blank Questions

Match the following terms with the best definition

- a. self-fertilization
- b. cross fertilize
- c. monohybrid crosses
- d. artificial selection
- e. reciprocal crosses

38. ________ The purposeful control of mating by choice of parents for the next generation.
 d

 *Bloom's Level 2: Understand
 Section: 2.01
 Topic: Mendelian Inheritance*

39. ________ Fertilization in which both egg and pollen come from the same plant, resulting in offspring with the same genetic traits as the single parent.
 a

 *Bloom's Level 2: Understand
 Section: 2.01
 Topic: Mendelian Inheritance*

40. ________ To brush the pollen from one plant onto the female organ of another plant, thereby creating offspring with the particular traits of the selected parent plants.
 b

 *Bloom's Level 2: Understand
 Section: 2.01
 Topic: Mendelian Inheritance*

41. ________ Crosses in which the male and female traits are reversed, thereby controlling whether a particular trait is transmitted by the egg or the pollen.
 e

 *Bloom's Level 2: Understand
 Section: 2.01
 Topic: Mendelian Inheritance*
Multiple Choice Questions

42. ______ is/are a cross(es) between parents that differ in only one trait.
 A. Self-fertilization
 B. Cross fertilize
 C. Monohybrid crosses
 D. Artificial selection
 E. Reciprocal crosses

43. An allele that expresses its phenotype even when heterozygous with a recessive allele is termed
 A. recessive.
 B. recombinant.
 C. dominant.
 D. parental.
 E. independent.

44. An alternative form of a single gene is known as
 A. parental.
 B. dihybrid.
 C. reciprocal.
 D. allele.
 E. recessive.

45. The diploid cell formed by the fertilization of the egg by the sperm during sexual reproduction is a
 A. reciprocal.
 B. zygote.
 C. dihybrid.
 D. gamete.
 E. monohybrid.

46. A phenotype reflecting a new combination of genes occurring during gamete formation is called
 A. a recombinant type.
 B. an independent assortment.
 C. heterozygous.
 D. homozygous.
 E. a multihybrid cross.

47. The actual alleles present in an individual make up the individual’s
 A. recombinant types.
 B. zygote.
 C. dominant allele.
 D. allele.
 E. genotype.
True / False Questions

48. Mendel was the only botanist to work with large numbers of offspring, to count all offspring, subject his results to statistical analysis, and then compare his results with predictions based on his models.

 FALSE

49. The mating of parents with antagonistic traits produces hybrids.

 TRUE

50. Mendel's law of segregation states that two alleles for each trait unite in a specific manner during gamete formation and therefore give rise to predictable observable traits.

 FALSE

51. Dihybrid crosses helped reveal the Law of Independent Assortment.

 TRUE

52. The Punnett square was introduced in 1906 by Reginald Punnett and provides a simple and convenient method of tracking possible combinations of gametes that might be produced in a given cross.

 TRUE

53. Using the product rule, one would calculate the probability of parents having six children who are all boys as \((\frac{1}{2})^6\).

 TRUE

54. The sum rule states that the probability of both of two mutually exclusive events occurring is the sum of their individual probabilities.

 FALSE

55. If you know the phenotype and the dominance relation of the alleles you can predict the genotype.

 TRUE

56. An individual can be a heterozygote for one trait and a homozygote for another.

 TRUE
57. A testcross is a cross between two heterozygotes.
FALSE

58. At fertilization, in the mating of dihybrids, four different kinds of eggs can combine with four different kinds of pollen, producing a total of sixteen different genotypes.
FALSE

59. During gamete formation, different pairs of alleles on different chromosomes segregate independently of each other.
TRUE

60. If yellow and round phenotypes in peas are dominant, you know the genotype of all peas that are green and wrinkled.
TRUE

61. A pedigree is a family history of a specific trait shown for a minimum of three generations.
TRUE

62. Several single-gene disorders are more common in some populations of people than in others.
TRUE

63. A lethal disorder does not include the inheritance of traits that cause death in adulthood.
FALSE

64. The following symbols ~ = ± indicate a consanguineous mating.
TRUE

65. Cross-fertilization is the same as reciprocal cross.
FALSE

66. The first filial generation is the offspring of parents.
TRUE

67. A zygote is a fertilized egg.
TRUE
68. A YY or yy genotype is called heterozygous.

FALSE

69. When Mendel repeated his pea experiments in beans, he found flowers that ranged from white to pale violet to purple. This is due to bean flower color being determined by more than one gene.

TRUE

Essay Questions

70. In corn liguleless, (l^1) is recessive to ligules (L^1) and a green leaf (G) is dominant to the normal non-green (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F_1.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llgg</td>
<td>Ligules/Green</td>
</tr>
</tbody>
</table>

71. In corn liguleless, (l^1) is recessive to ligules (L^1) and a green leaf (G) is dominant to the normal non-green (g). If a testcross is performed with a plant heterozygous for ligules and green leaves, what would be the phenotypes and genotypes of the progeny?

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llgg</td>
<td>Ligules/Green</td>
</tr>
<tr>
<td>Lllg</td>
<td>Ligules/Non-green</td>
</tr>
<tr>
<td>llgG</td>
<td>Liguleless/Green</td>
</tr>
<tr>
<td>lllg</td>
<td>Liguleless/Non-green</td>
</tr>
</tbody>
</table>

72. In corn liguleless, (l^1) is recessive to ligules (L^1) and a green leaf (G) is dominant to the normal non-green (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules predict the phenotypes and genotypes of the F_2.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:LLGG</td>
<td>Ligules/Green</td>
</tr>
<tr>
<td>2:LLGg</td>
<td>Ligules/Green</td>
</tr>
<tr>
<td>2:LLGG</td>
<td>Ligules/Green</td>
</tr>
<tr>
<td>4:LGg</td>
<td>Ligules/Green</td>
</tr>
<tr>
<td>1:LLgg</td>
<td>Ligules/Non-green</td>
</tr>
<tr>
<td>2:llgg</td>
<td>Ligules/Non-green</td>
</tr>
<tr>
<td>1:llGG</td>
<td>Liguleless/Green</td>
</tr>
<tr>
<td>2:llGg</td>
<td>Liguleless/Green</td>
</tr>
<tr>
<td>1:llgg</td>
<td>Liguleless/Non-green</td>
</tr>
</tbody>
</table>
73. In *Drosophila*, forked bristles (fk) are recessive to normal (fk+) and glassy eyes (gls) are recessive to normal (gls+). If a homozygous wild-type male is mated to a forked-bristle, glassy-eye female, predict the genotypes and phenotypes of the F₁.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>fk+fk gls+gls</td>
<td>Wild type</td>
</tr>
</tbody>
</table>

74. In *Drosophila*, forked (fk) bristles are recessive to normal (fk+) and glassy eyes (gls) are recessive to normal (gls+). If an F₁ heterozygous female is backcrossed to the homozygous wild-type male parent, predict the genotypes and phenotypes of the offspring.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>fk"fk gls"gls</td>
<td>Wild type</td>
</tr>
<tr>
<td>fk"fk gls"gls</td>
<td>Wild type</td>
</tr>
<tr>
<td>1:fk fk gls gls</td>
<td>Wild type</td>
</tr>
<tr>
<td>1:fk fk gls gls</td>
<td>Wild type</td>
</tr>
</tbody>
</table>

75. In *Drosophila*, forked (fk) bristles are recessive to normal (fk+) and glassy eyes (gls) are recessive to normal (gls+). If a homozygous wild-type male is mated to a forked-bristled, glassy-eyed female, predict the genotypes and phenotypes of the F₂.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:fk+fk+ gls+gls+</td>
<td>Wild type</td>
</tr>
<tr>
<td>2:fk+fk+ gls+gls</td>
<td>Wild type</td>
</tr>
<tr>
<td>2:fk+fk gls+gls+</td>
<td>Wild type</td>
</tr>
<tr>
<td>4:fk+fk gls+gls</td>
<td>Wild type</td>
</tr>
<tr>
<td>1:fk+fk+ gls+gls</td>
<td>Glassy eyes</td>
</tr>
<tr>
<td>2:fk+fk gls+gls</td>
<td>Glassy eyes</td>
</tr>
<tr>
<td>1:fk fk gls+gls+</td>
<td>Forked bristle</td>
</tr>
<tr>
<td>2:fk fk gls+gls</td>
<td>Forked bristle</td>
</tr>
<tr>
<td>1:fkfk gls+gls</td>
<td>Forked bristles and glassy eyes</td>
</tr>
</tbody>
</table>

76. A rosy-eyed *Drosophila* with wild-type bristles was crossed with a forked *Drosophila* with wild-type eyes. The F₁ were wild type for both traits, whereas the F₂ consisted of 306 wild-type, 94 rosy-eyed, 102 fork-bristled, and 33 forked-bristled and rosy-eyed flies. Infer the genotypes of the parents.

Both parents are homozygotes; AAbb × aaBB.
77. In pecans, the outer shell may be thick (T) or thin (t). The shell of pecans is the pericarp. If you use the pollen from a homozygous thick shell to pollinate a thin-shell tree, what shell type would form on the pecans of this tree following the cross?

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin</td>
<td>tt</td>
</tr>
</tbody>
</table>

Bloom's Level 5: Evaluate
Section: 2.02
Topic: Mendelian Inheritance

78. If you use the seed from the pecans of the above cross to produce an F₂, what shell type will form on the pecans of the F₁ plant?

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick</td>
<td>Tt</td>
</tr>
</tbody>
</table>

Bloom's Level 5: Evaluate
Section: 2.02
Topic: Mendelian Inheritance

79. After a cross between two corn plants, the F₁ plants all had a dwarfed phenotype. The F₂ consisted of 1,207 dwarf plants and 401 tall plants. Identify the phenotypes and genotypes of the two parents.

<table>
<thead>
<tr>
<th>Parent A</th>
<th>Parent B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>Genotype</td>
</tr>
<tr>
<td>Phenotype</td>
<td>Phenotype</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parent A</th>
<th>Parent B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD/dwarf</td>
<td>dd/tall</td>
</tr>
</tbody>
</table>

Bloom's Level 5: Evaluate
Section: 2.02
Topic: Mendelian Inheritance
80. After a cross between two mice, the F₁ offspring all had the same phenotype. The F₂ consisted of 91 short tails and 29 normal tails. Identify the phenotypes and genotypes of the two parent mice.

<table>
<thead>
<tr>
<th>Parent A</th>
<th>Genotype</th>
<th>Parent B</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenotype</td>
<td></td>
<td>Phenotype</td>
</tr>
</tbody>
</table>

Below is a pedigree for a human trait. Shaded symbols are for individuals exhibiting the trait. (A) Identify the mode of inheritance of the trait. (B) Apply the laws of probability to calculate the probability that the offspring of a marriage between unaffected cousins will exhibit the trait.

81. (A) Mode of inheritance

Recessive

82. (B) Probability

1/3
83. In some plants, a purple pigment is synthesized from a colorless precursor. In a cross between two plants, one purple and the other colorless, an F1 generation was produced that was all-purple. The F2 produced from the F1 had 775 purple, 200 red and 65 colorless. What is the genotype of the parents?

The ratio is 12:3:1; Parents: AABB × aabb

84. Short hair in rabbits is produced by a dominant gene (I^+) and long hair by its recessive allele (I). Black hair results from the action of a dominant gene (b^+) and brown hair from its allele (b). Determine the genotypic and the corresponding phenotypic ratios of the F1 from a cross of a female rabbit with brown hair and a male rabbit with long hair. Assume that the female is homozygous for short hair and the male is homozygous for black hair.

85. Short hair in rabbits is produced by a dominant gene (I^+) and long hair by its recessive allele (I). Black hair results from the action of a dominant gene (b^+) and brown hair from its allele (b). Determine the genotypic and the corresponding phenotypic ratios of the F2 offspring, beginning with a parental cross of a female rabbit with brown hair and a male rabbit with long hair. Assume that the P female is homozygous for short hair and the P male is homozygous for black hair.
86. Stem color of tomato plants is known to be under the genetic control of at least one pair of alleles such that A- results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F₁ from a cross between an inbred tomato plant with a purple stem and fruit with two locules crossed to a tomato plant with a green stem and fruit with multiple locules.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaMm</td>
<td>Purple, 2 locules</td>
</tr>
</tbody>
</table>

Bloom's Level 4: Analyze
Bloom's Level 5: Evaluate
Topic: Mendelian Inheritance

87. Stem color of tomato plants is known to be under the genetic control of at least one pair of alleles such that A- results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F₂ offspring beginning with a parental cross between an inbred tomato plant that has a purple stem and fruit with two locules and a tomato plant that has a green stem and fruit with multiple locules.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMM</td>
<td>Purple, 2 locules</td>
</tr>
<tr>
<td>AaMM</td>
<td>Green, 2 locules</td>
</tr>
<tr>
<td>AaMm</td>
<td>Green, 2 locules</td>
</tr>
<tr>
<td>AAmM</td>
<td>Purple, Multi locules</td>
</tr>
<tr>
<td>AAMm</td>
<td>Purple, Multi locules</td>
</tr>
<tr>
<td>aamm</td>
<td>Green, Multi locules</td>
</tr>
</tbody>
</table>

Bloom's Level 5: Evaluate
Topic: Mendelian Inheritance

88. What does a diamond symbol ♠ in a pedigree indicate?

Sex unspecified

Bloom's Level 1: Remember
Topic: Mendelian Inheritance

89. What does a vertical pattern of inheritance in a pedigree likely indicate?

Rare dominant trait

Bloom's Level 1: Remember
Topic: Mendelian Inheritance
90. Calculate the probability of the production of a homozygous recessive genotype for the following cross: \(\text{AaBbCcddEeFf} \times \text{AaBbCcddEeFf}\)

\[
\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 1 \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{512}
\]

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

91. Calculate the probability of either all-dominant or all-recessive genotypes for the alleles A, B, E, and F in the following cross: \(\text{AaBbCcddEeFf} \times \text{AaBbCcddEeFf}\)

\[
\left(\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) = \frac{81}{256} + \frac{1}{256} = \frac{82}{256} = \frac{41}{128}
\]

Bloom's Level 3: Apply
Section: 2.02
Topic: Mendelian Inheritance

92. What are the four general themes that have arisen from Mendel's work?

Variation, as expressed in alternative forms of a trait, is widespread in nature. Observable variation is essential for following inheritance of traits. Variation is not distributed by chance alone but is inherited according to the genetic tenet that "like begets like." Mendel's laws apply to all sexually reproducing organisms.

What are the possible genotypes of persons 1, 2, 3 and 4?

93. **Person 1**

Aa

Bloom's Level 3: Apply
Section: 2.03
Topic: Mendelian Inheritance

94. **Person 2**

Aa

Bloom's Level 3: Apply
Section: 2.03
Topic: Mendelian Inheritance
95. **Person 3**
Aa

96. **Person 4**
aa

97. Below is a pedigree of a human genetic disease in which solid color indicates stricken individuals. Apply the laws of probability and calculate the probability the offspring of the cousin marriage 2 \times 3 will exhibit the disease.

![Pedigree diagram]

The trait is a recessive trait, and both cousins are carriers: \(\frac{1}{4} \)

98. Below is a pedigree of a human genetic disease in which solid color indicates stricken individuals. Apply the laws of probability and calculate the probability the offspring of the cousin marriage 1 \times 4 will exhibit the disease.

![Pedigree diagram]

The trait is a recessive trait, and cousin 1 is heterozygous while cousin 4 is homozygous affected: \(\frac{1}{2} \)
99. A youngster has dozens of pet mice and asks you why their coat colors are so different. He explains that his favorite color is black with white patches and wonders how he can get more of them, yet his favorite mice are actually the "nice" white ones who are gentler than the active nippy black ones. You decide to give a simple genetics lesson. Help the youngster set up an artificial selection for "nice" black mice with white spots, including an indication of expected results and an interpretation of the data.

Breed male black mice with female white mice and male white mice with female black mice. Interbreed the offspring. Test all black mice with white spots for gentle behavior and breed the gentlest males to the gentlest females. If the genes for coat color and gentle behavior are unlinked, are not closely linked, or are not the same gene, this experimental design will result in the production of gentle mice that are black with white spots. If this selection is continued for numerous generations, the genes will become fixed in the population and gentle black mice with white spots will always result.

Bloom's Level 6: Create
Topic: Mendelian Inheritance

100. As an owner of an orchard you realize that the selective breeding of apple trees to produce the most beautiful red apples have left customers displeased with the now bland-tasting beautiful apples. What has been indicated about the two traits? How would you as an orchard owner fix the problem for the long term?

The genes for taste and red color are not linked. To fix the beautiful but tasteless apple problem, a rederivation of the apples is necessary. It will be necessary to cross trees with beautiful red apples to trees with tasty apples. Each generation of trees should be observed for both tasty and colorful fruit. Then crosses should be made between the flowers of trees with fruit that is the most tasty and colorful. As you might imagine, fixing the problem in your orchard will take a very long time using this method.

Bloom's Level 6: Create
Section: 2.02
Topic: Mendelian Inheritance

101. You are out on a nature walk up in the mountains and you find a pretty wildflower in the lower altitude that is short and bushy with small, fragrant, bright purple flowers. In the higher altitude you find what seems to be the same plant, yet it is tall and sparse with larger flowers of the same color and fragrance. A) Set up an experiment to test the hypothesis that the plants are different due to genetic but not environmental influences. B) Is it possible to tell if both genetic and environmental effects occur?

A) Assuming these are not endangered plants and you are not in a protected area, obtain several specimens from each location. Plant seeds of both types of plants in both low- and high-altitude locations. Observe the offspring. If the offspring look the same as their parental stock, then the differences are simply genetic in nature. If the offspring look short and bushy with small fragrant, bright purple flowers in the lower altitude, but tall and sparse with larger flowers of the same color and fragrance in the higher altitude, then the differences are due to environmental influences. B) Yes, a combination of the traits would indicate that both environmental and genetic influences play a role in the differences you have identified.

Bloom's Level 6: Create
Section: 2.02
Topic: Mendelian Inheritance
102. You wish to know the genotype of some carrot plants that you have grown in your garden so that you might grow more of them. They have reddish orange flesh, are sweet in taste, long in root, and short in leaf. Using classical genetic techniques how would you determine the genotype?

You need to determine the dominant/recessive nature of each trait. Set up crosses between reddish orange, sweet tasting, long in root, and short in leaf carrot plants and true orange, plain tasting, short in root, and long in leaf carrot plants to determine each dominant trait. Then create a "tester plant" that is recessive for all four traits. Cross your favorite carrot plants with the tester and observe the offspring. The traits shown in the offspring are indicative of the genotype of your original carrot plant.

103. You are talking to your father about your relatives and he shares with you that there is a late-onset disease that seems to run in his family. What could you do to determine your probability of having this late-onset disease?

Create a pedigree of your family tree for the late-onset disease going back at least three but as many generations as possible. Based on the family pedigree, you need to determine whether the trait is recessive or dominant, and autosomal or sex-linked. Use the product rule to determine the probability of your having inherited the trait. Keep in mind that individuals not old enough to exhibit the trait should be diagramed as unknowns on your pedigree, and your probability of inheriting the disease may depend on whether an unknown individual carries the trait.
Chapter 02 Mendel's Principles of Heredity Summary

<table>
<thead>
<tr>
<th>Category</th>
<th># of Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloom's Level 1: Remember</td>
<td>16</td>
</tr>
<tr>
<td>Bloom's Level 2: Understand</td>
<td>32</td>
</tr>
<tr>
<td>Bloom's Level 3: Apply</td>
<td>26</td>
</tr>
<tr>
<td>Bloom's Level 4: Analyze</td>
<td>18</td>
</tr>
<tr>
<td>Bloom's Level 5: Evaluate</td>
<td>12</td>
</tr>
<tr>
<td>Bloom's Level 6: Create</td>
<td>5</td>
</tr>
<tr>
<td>Section: 2.01</td>
<td>25</td>
</tr>
<tr>
<td>Section: 2.02</td>
<td>56</td>
</tr>
<tr>
<td>Section: 2.03</td>
<td>26</td>
</tr>
<tr>
<td>Topic: General</td>
<td>5</td>
</tr>
<tr>
<td>Topic: Mendelian Inheritance</td>
<td>102</td>
</tr>
</tbody>
</table>